CRNreals: a toolbox for distinguishability and identifiability analysis of biochemical reaction networks

نویسندگان

  • Gábor Szederkényi
  • Julio R. Banga
  • Antonio A. Alonso
چکیده

UNLABELLED Chemical reaction network theory is widely used in modeling and analyzing complex biochemical systems such as metabolic networks and cell signalling pathways. Being able to produce all the biologically and chemically important qualitative dynamical features, chemical reaction networks (CRNs) have attracted significant attention in the systems biology community. It is well-known that the reliable inference of CRN models generally requires thorough identifiability and distinguishability analysis together with carefully selected prior modeling assumptions. Here, we present a software toolbox CRNreals that supports the distinguishability and identifiability analysis of CRN models using recently published optimization-based procedures. AVAILABILITY AND IMPLEMENTATION The CRNreals toolbox and the associated documentation are available at http://www.iim.csic.es/~gingproc/CRNreals/. The toolbox runs under the popular MATLAB computational environment and supports several free and commercial linear programming and mixed integer linear programming solvers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Easy parameter identifiability analysis with COPASI

BACKGROUND AND SCOPE Differential equation systems modeling biochemical reaction networks can only give quantitative predictions, when they are in accordance with experimental data. However, even if a model can well recapitulate given data, it is often the case that some of its kinetic parameters can be arbitrarily chosen without significantly affecting the simulation results. This indicates a ...

متن کامل

Numerical modeling for nonlinear biochemical reaction networks

Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...

متن کامل

Integrating software packages for the analysis of biological pathway networks

Interactions at the cellular level are essential for maintaining the fundamental life processes in biological systems. The relationships that are established due to the biochemical reactions occurring within the cells often give rise to extremely complex network structures that may be conveniently represented by bipartite graphs; such networks are often known as biological pathway graphs (BPGs)...

متن کامل

Automated design of programmable enzyme-driven DNA circuits.

Molecular programming allows for the bottom-up engineering of biochemical reaction networks in a controlled in vitro setting. These engineered biochemical reaction networks yield important insight in the design principles of biological systems and can potentially enrich molecular diagnostic systems. The DNA polymerase-nickase-exonuclease (PEN) toolbox has recently been used to program oscillato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 28 11  شماره 

صفحات  -

تاریخ انتشار 2012